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LETTER TO THE EDITOR 

q-deformations of the O(3) symmetric spin-1 Heisenberg chain 

Murray T BatchelortS, Luca Mezincescug, Rafael I NepomechieO and 
V Rittenberg§ 11 
t Department of Mathematics, University of Melbourne, Parkville, Vic 3052, Australia 

ACT 2601, Australia 
$ Department of Physics, University of Miami, Coral Gables, FL 33124, USA 

Centre for Mathematical Analysis, Australian National University, GPO Box 4, Canberra, 

Received 23 October 1989. in final form 6 December 1989 

Abstract. We present the general expression for the spin-1 Heisenberg chain invariant 
under the Uq[SO(3)] quantum algebra. Several physical and mathematical implications 
are discussed. 

Recently there has been a considerable interest in the properties of the one-dimensional 
O(3)  symmetric spin-1 Heisenberg chain defined by the Hamiltonian (Affleck er a1 
1988, Papanicolaou 1988, Barber and Batchelor 1989b and references therein): 

where a = +l(-1) corresponds to the antiferromagnetic (ferromagnetic) chain ( a  3 0). 
The eigenvalues of the matrix O k  are 

E o = - 2 a + 4 b  E l  = - a +  b E2 = a + b. (2) 
E, is the eigenvalue corresponding to total angular momentum J (where Sk + & + I  = J ) .  
Exact results have been obtained when two of the three eigenvalues coincide. We thus 
know that for a = b = a = 1 (Sutherland 1975, de Vega 1989) the system is massless 
with a central charge c = 2 of the Virasoro algebra. This point is SU(3) symmetric 
( E2 = Eo) and corresponds to the 3 x 3 = 6+3 branching rules. Furthermore, the 
matrices 

v k = o k ( l ,  1)-1 (3) 

v', = 1 [ vk, v k ' l  = 0 (Ik - k'( 2 2) (4a) 

satisfy the Hecke algebra (Jimbo 1986): 

v k v k + I  v k  = v k + l  v k v k + l *  ( 4 b )  
The point a = 0, b = (Y = 1( E2 = E,) also h,as SU(3) invariance, corresponding to the 
3 x 3 = 1 +8 branching rules. The matrices 

u k = o k ( o ,  1)-1 ( 5 )  11 Permanent address: Physikalisches Institut, Bonn University, Nussalle 12, D-5300 Bonn 1, West Germany. 
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satisfy the Temperley-Lieb algebra (Barber and Batchelor 1989a) 

ui=puk [ uk, Uk.1 = 0 (Ik - k ' l ~  2) ( 6 a )  

ukuk+l uk= uk ( 6 6 )  
with p = 3. We remind the reader that according to the lore derived from the spin-f 
Heisenberg chain, a system has a second-order phase transition if -2 S p C 2 and a 
first-order transition otherwise. The fact that the Hamiltonian with Ok(0, 1) describes 
a massive phase was confirmed by the inversion relation calculations of Klumper 
(1989a, b). The case cy = U = 1, b = 1/3 (E, = E,) was solved by Affleck et a1 (1988), 
who obtained again a massive phase. Finally the case a = -b = 1 (no two E,S have 
the same value) corresponds to the O(3) symmetric Zamolodchikov-Fateev (1980) 
chain. Here one obtains a massless phase with a central charge c =3/2 for cy = 1 
(Alcaraz and Martins 1989a and references therein) and c = 1 for a = -1 (Alcaraz and 
Martins 1989b, Baranowski and Rittenberg 1990). 

In the present letter we consider the q-deformation of the Hamiltonian (1). We 
first define the U,[SU(2)] quantum algebra (see, e.g., Jimbo 1985): 

[ S', 3'1 = f s* [ s+, 3-1 = [2s'], (7)  
where 

- 1  - 1  
[ X I ,  = (qX - 4 - 7 4  - 4 1 . 

For the three-dimensional representation ( J  = 1) we have 

where the S', S' matrices are the same as those used in (1) (S' = S" *isy) .  Using 
the Casimir operator 

c2 = s-s+ + ([ 3' + ;],y (10) 
one can construct Uq[SU[2)] invariant quantities. We consider the tensor product 
(co-multiplication) of two J = 1 representations: 

S' = s ; q g i + I  + q-g:S;+l = Jlzly ( s ; q s i + ,  + q-sis;+l), 
2 

(11) 
Using (11) we can compute C2 and (C2)2 in order to derive the q-deformation of 
Ok(a, b), which we denote by Ok(ar b; q ) .  We obtain 

a(% b; 4 )  = a(Sk ' s k + i )  + b(Sk * S k + l ) '  

qs;  = qsiqs;+l 

+ (sinhZA)[2a(S;)' + 2a( Si+,)'+ ( a  - b) (S iS ' ,+ ,  - (Si)2(Si+l)2)] 
+i(a+b)(s inh A)[(S;S;+I +SiS~+,)(S;+, -S;)+HC] 

+2(b -a )  sinh2- [ ( S ~ S ~ + l + s ~ s ~ + , ) s ~ s ~ + l + ~ ~ ]  

+(sinh 2A)[a(Si+ ,  - S ; ) + f ( a + b ) S ; S ; + , ( S ; + ,  -Si)] (12) 

( :> 
where q =e*. The eigenvalues of Ok(a, b; q ) ,  which are q-dependent, are 

Eo( 4) = -2a + b( q + 4-l)' 

E 2 ( q )  = a(q2+ q- ' -  1) + b. 

E , ( q )  = -a  + b 

(13) 
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For q = 1 we recover the values given in (2). We are now about to have some surprises. 
If you take a = b = 1 we have E,( q )  = Eo( q )  as in the q = 1 case. This result is unexpected 
since the Vq[SO(3)] should break the SU(3) multiplet structure. At the same time, 
the Vq[SU(3)] invariant Hamiltonian obtained by taking the 3 x 3 representations is 
given by (de Vega 1989 and references therein) 

03kx3 = 2 TF TF+l + sinh A sgn( r - s )  TY TSkS+l + 1 
rs r.s 

where the 3 x 3 matrix T” has all its elements zero except the one in the r-row and 
s-column which is equal to one. This matrix has the eigenvalues 

which are different from those given by (13)  (except for q = 1 ) .  This raises the question 
of whether our a = b = 1 Hamiltonian corresponds to a new SU(3) deformation. (We 
should keep in mind that the decomposition SU(3) 3 SO(3) as opposed to SU(3) 2 

SU(2)@U(1) leaves only one element in the Cartan subalgebra instead of two, and 
thus the effect of the SO(3) deformation is unclear.) To answer this question, we have 
next computed the eigenvalues of the matrix 

(16) 

where 7 is a parameter. If there is an SU(3) structure, the degeneracy of eigenvalues 
should be given by the branching rule 

3 x 3 x 3 = 1 +8, +8,+ 10. 

Ok(1, 1; q)+VOk+l(1, 1; 9) 

(17) 

The actual calculation gives, for any value of 7, six different eigenvalues instead of 
four: a singlet, two triplets, two quintets and a decuplet. So the single remnant of the 
SU(3) structure is the decuplet. It is thus probable that the higher degeneracies so far 
observed will disappear when we consider a higher number of sites. Moreover, as 
opposed to the 03kx3 defined by (14) which have the property that 03kx3 - 1 satisfy a 
Hecke algebra (Jimbo 1986), one can prove that there is no value of .$ for which 

(18) 
satisfy the relation (4b) and thus the model is probably not integrable. The phase 
structure of this model remains to be studied. In particular, it would be interesting to 
know whether there is a second-order phase transition when q is a root of unity. 

We now consider the case a = 0, b = 1. We notice again the relation E , ( q )  = E , ( q )  
as for q = 1. We observe that the matrix 

wk = ok(1, 1;  q)- t  

uk=ok(o ,1;q)-1  (19) 
has the following matrix elements: 

( m , ,  m21 UkIm:, m;> = s m l + m , , o s m i + m ; , , ~ m ~ “ ’ ( - l ) m ~ - m ’  

(20) 
and that the Temperley-Lieb algebra is satisfied with /3 = [3],. This result is interesting 
since by choosing q = ei* and 4 2 1~16, one obtains /3 Q 2 and presumably a second- 
order phase transition. One physical consequence of our result is that it includes a 
further integrable quantum spin chain which, via the Temperley-Lieb equivalence, 
should belong to the Potts universality class. What happens for O <  4 c ~ / 6  and 

(-Ss m s  S, S =  1) 



L144 Letter to the Editor 

rational is an open question. A direct calculation of the Uq[SU(3)] invariant for the 
3 x 5 product gives 
o:x3 = c T;: T;+, + ( q - 2  - 1) T : ~  T;:~ + ( q 2  - 1) 7-i3 T;:, + (4-1 - 1 )( T ; ~  T;:~ + T;I T::,) 

r, s 

(21) 
31 31 +(q-l)(TL3T::1+ Tk Tk+l) 

and one can easily check that O:x3= Ok(0, 1; -4). We have found no explanation for 
the fact that the SU(3) structure is maintained in the 3 x 3 case and is not in the 3 x 3 
case. 

A remarkable feature of O:x3 is that it can be used to construct a Hamiltonian for 
a closed chain, which preserves translational invariance. (This is not possible for 
O”,”.) In the region of the second-order phase transition, one could determine by 
inspection of the finite-size scaling spectra the equivalent of the modular invariants 
with Uq[SU(3)] symmetry. 

again satisfy 
the Temperley-Lieb algebra with /3 = [ n],, n = 2 s  + 1. This generalises a result obtained 
by Affleck (1989) and Batchelor and Barber (1989) for the undeformed case. 

The condition E , ( q )  = E, (q )  which might allow the method of valence bond (Affleck 
er al 1988) to be applied is given by the line 

Equation (20) generalises to higher spins: for S >  1, the matrices 

a 
-= ( q  + q - y  - 1. 
b 

Finally taking a = -b  = 1 in (12), one obtains the bulk terms of the Zamolodchikov 
and Fateev (1980) model. The effect of the surface terms will be considered elsewhere 
(Pasquier and Saleur 1989, Mezincescu er al 1989). 
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